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Let u(O) be an absolutely integrable function and define the random process 

n(t) = Z u(s,(t - t~)) 

where the t~ are Poisson arrivals and the s~ are identically distributed non- 
negative random variables. Under  routine independence assumptions, one 
may then calculate a formula for the spectrum of n(t), S,,(oa), in terms of the 
probability density of s, p,(a). If any probability density p,(a) having the 
property p~(a) ~ [ for small x is substituted into this forrnula, the calculated 
S,,(~o) is such that S,(a,) ~ 1:o0 for small ~o. However, this is not a spectrum 
of a well-defined random procesg; here, it is termed a limil specrrtmT. If a 
probability density having the property p,(a) .~ a ~ for small ~, where 8 > O, 
is substituted into the formula instead, a spectrum is calculated which is 
indeed the spectrum of a well-defined random process. Also, if the latter p, 
is suitably close to the former p , ,  then the spectrum in the second case 
approximates, to an arbitrary degree of accuracy, the limit spectrum. It 
is  shown how one may thereby have 1,7" noise with low-frequency turnover, 
and also strict 1 f~-a noise (the latter spectrum being integrable for ~ > 0). 
Suitable examples are given. Actually, u(O) may be itself a random process. 
and the theory is developed on this basis. 

KEY W O R D S :  Flicker effect; 1If nois~; Poisson process. 

1. I N T R O D U C T I O N  

T h e  p h e n o m e n o n  o f  " I / f  n o i s e "  is a m o s t  u b i q u i t o u s  one .  T h e  first  o b s e r -  

v a t i o n s  o f  no i se  p roces se s  w h i c h  h a d  p o w e r  s p e c t r a  e s s en t i a l l y  o f  t he  f o r m  1 /  

for  f r e q u e n c i e s  as low as p r a c t i c a b l y  m e a s u r a b l e  a p p e a r  to be  t h o s e  o f  
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Schottky, ~1) x~hose studies x~ere concerned with vacum~a tubes: he called it 
"'flicker effect" ("Funkeleffekt"). It has been most x~idely, studied in 
connection "with semiconductors, {a-a~ but has also been obserxed in the .fre- 
quency fluctuations in quartz crystal oscillators and in seasonal temperature 
fluctuations, ~5) in photographic films, (6) in thin ,metallic films, ~7~ and in nerve 
membranes? 8} The standard mathematical theory has been that of  van der 
Ziel. ~9~ Mandelbrot (~~ has studied some mathematical aspects of  t/J-like 
spectra. Offner m~ has studied the problem via computer simulation. 

A minor aspect of the problem is that a strict I / f  spectrum for small J '  
is not integrable;infinite energy or so-called "infrared catastrophe" is implied. 
A more" important  part  of the problem has been the apparent  difficulty of  
producing a mathematical model which is not in some respect quite arbitrary: 
either a relatively strange waveform [e.g., 1 / V t  or Ko(at)] or a very special 
probability density must be postulated to make some theories work. 

In this paper, simple mathematical 'conditions are exhibited which imply 
a I / f  spectrum, and a physical example is given in which no arbitrary assump- 
tions are made. However, no at tempt is made here to fit the theory to the 
various contexts in which l J n o i s e  is observed. 

As a preliminary on notation, an expression of the t'orm 

f ( c ~ ) , - . g ( a )  small a (1) 

for continuous functionsf,  g means 

lira [ f  (a)/g(e,)] = c:g 
a-~0 

(2) 

where c:g is a finite nonzero constant. The expression 

f (e  0 '~ g(~) small 

means that (1) holds in the sense of (2) with c:g = 1. 

Processes composed of superposed pulses of the form u(&(t - -  t,)) are 
studied. The {t~] are Poisson arrivals and si is a random variable; hence 

s i ( t -  ti) (3) 

means theproduc t  o fs i  and t -- ti~ Another v(ay of proceeding would be to 
use (t - -  t i ) /T  ~ in place of (3). Ti has the dimension of time and may be 
thought of as a time constant, and & = I /T~.  Theories related to the present 
one have done the equivalent of carry Ti along in the analysis, but 
it is believed, for reasons made clear here, that it is more convenient to 
focus attention on si .  
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2. A P O I S S O N  P R O C E S S  

Let w(t) be a random process, and define 

~,(t) = E{w(t)~,  w~(t) - -  2w(t)',. 

. and let 

~,,(t) = E-{w.O)} 

201 

:L~,,,(-c) = j E{w(t) w(t + r)} dt (5) 
- - z o  

Let {ti) be Poisson arrivals with average frequency ,~. Let {w;(t)} be a 
sequence of random processes, all having the distribution of w(t), and all 
being mutually independent of each other and of-the arrival times. Define 
the random process 

n(t) = ~ w , . ( t -  t<) (6) 

It is shown in Appendix A that under the assumption that 

I "'~ %(t) dr < ~ 
J z ~  / 

the process n(t) is well-defined and stationary, with mean 

= ; ~  t ~(t)  dt 
~ z c  

and covariance 

~ . 0 - )  = ; ~ , ( ~ - )  

where ~ is defined in Eqs. (4) and .%. in Eq. (5). 
Now, let u(O) be a random process, 0 dimensionless, define u,,(O) ---- u(O) 

and assume 

j r,~(o) ao < ~o (7) 
~ a c  

Hence by the preceding results, 

r  

f E{u(O) u(O + ~)) dO 
- - a o  

has the form of a covariance function; for example, it is continuous. It is 
further assumed that c~ad/z ) is of bounded variation. The function 

~o 

Sdv)  = 2 f (cos v/z) 5~,,(/x) d/z 
0 

has the form of a spectrum; for example, it is nonnegative. 

(4) 
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Let s be a nonnegative random variable with a probability density 
function defined for a --_: 0 

where 

Now, let 

p.(a) ~-~ ~e small = (8) 

8 > 0 (9) 

w(t) = u(st) 

thus giving a special form to the random process (6). Namely, let {%.(0)} be a 
sequence of mutually independent random processes, all having the distri- 
bution of u(0), and let {&} be a sequence of mutually independent random 
variables, all havir~g the distribution of s. Assume also that the s; are inde- 
pendent of the u~(O). Thus 

, ,(t)= , , ( , w - , , ) )  (lO) 
i ~ - - : o  

becomes the process under consideration. It is shown in Appendix B that 
the random process (10), tinder the conditions (7)-(9). is welt-defined and 
stationary with mean 

= A j (1/~)p.(o 0 do~ [ ~(0) dO 

covariance 

and spectrum 

~nO-) = ~ J o (1/_0 pX,,) .xo(,.,7) a~, 

oo 

&(w) = ;t f 0/~0-) p.(~) s,,(w/~) d~, (t 1) 
0 

3. 1If NORSE 

3.1. The Limit Spectrum 

Consider a probability density function 

p0(c~) ~ 1 small 

This does not satisfy (8) and (9), so, replacing p,  in (11) with P0 allows one to 
calculate a function of co, but that function (called the limit spectrum) is not 
necessarily the spectrum of a random process. The limit spectrum is 

So(m ) = (A/%o) ~ po(~)(w/c~) S~(w/~) d~ (12) 
0 
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Fig. 1. 

r I = 2 w z = 4 W  5 

Po ( a )  

V_. I ~ -  

- O 

Plot of (~o/a~)S~(,J/~) versus ~ for various o~. 

Observe  that  for  m > 0, 

( (m/~ -~) S~(m/~) d~ = ~| s . ~ )  d~ = , ,~,(o) 
" 0  0 

which is a constant ,  independent  of  m. Now,  by inspection of  Fig. 1, it is 
clear that  as m is decreased, the function (m/~ "~) &,(m/c~), regarded as a funct ion 
of  a, becomes progressively a sharper  spike concent ra ted  near  a = 0, all 

s p ike s  having constant  integral. Hence 

' 2 t p0(a)(m/a ) S,,(m/a) d~ ~ 7rpo(0) Z , ( 0 )  small m > 0 
" 0  

and 

So(m) ~ trap0(0) ~(O)/m small  m > 0 

Thus the limit spectrum is strictly 1/f  for  s m a l l f  

3.2. Approximation of the Limit  Spectrum 

Now,recons ider  the spec t rum o f n ( t ) a n d  make  the addi t ional  assumpt ion  
tha t  for  some A > 0, 

SO(v) <~ A/V 2 (13) 

for  all v. Take  any m0 > 0 and let m >~ m o . F r o m  (11) and (12), 

~ z c  
o /  o ~ p~(~), po(~) (m', ~ ')  &(m/~) ,d~ t S , /m)  - SO(m), = (~/m~) J0 --  

(AZ/mo 2) f i p~(a) -- po(~)] da (14) ~< 
0 
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from (13), and hence the spectrum of i~(t) can be made arbitraril? close to the 
limit spectrum, uniformly for all co ~ coo.> 0, by taking a probability 
density p,(a) very close to po(c0 in the Lx sense. This, of course, permits that 
S,,(o2) have low-frequency turnover. 

3.3. Str ic t  l / f  l-n N o i s e  

Now, drop the assumption (13) and add the assumption 

S~(v) ~ I/v q small v 

for some q < 1 -- 8. Then from (11), taking w > 0. 

zc 

0 

= (/~/r 1-6) j h(~.~)(oal-~/l& ~-~) Su((..,o / -t) (.t.3. 
o 

where 

SO 

*Observe that 

h(~) = ( I /~ )p~(~)  

h(~) ~ 1 small 

(ts) 

= (i/'v ~) S~(v) dv 

independently of ~o; (15) implies the existence of this integral. By the same 
sort of argument used in the analysis of So(co), 

S,,(co) ~ ,-rAh(0) l~/'oJ ~-~ small co > 0 

vt~ = ( 1/v ~) S~(v) dv 
~ 0  

This is a strict 1/f 1-~ spectrum for sma l l f  

where 

4. E X A M P L E S  

It remains to give physical examples in which the conditions hold. The 
special case where u(O) is a deterministic function, 

tl ,  0 ~ 0 ~ 1  
u(O) = t0, elsewhere 
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is eml~loyed. Hence 

~,(,~) = ~1 - # , 
t0, 

which is a funct ion of  bounded  var ia tmn.  

elsewhere 

Also 

S,,(v) = [(sin }v)/}v] 2 (16) 

which satisfies (13). 
Consider  a rec tangular  chamber  C (Fig. 2) which is adjacent  to an 

infinite source S containing a gas whose molecules have a Gauss ian  distri- 
but ion of  vector  velocity: 

p ~ . ( a ,  13, y) = [1/(Dr)a/2 cr a] e x p [ - - ( a  2 + fi~ ,-5 72)/2~ 2] 

Molecules enter C through the small  hole H and are eventually absorbed  
by either the wall in the xz plane a distance L f rom the hole, or  one of  the 
two walls in the xy plane a distance W f rom H. The walls in the yz  plane. 
parallel  to the page. are assumed to be reflecting. It  is assumed that H i~ 
small  enough so that  there are no collisions of  molecules in C; each molecule 
travels l inearly at constant  velocity toward  one of  the absorbing  walls. 

The r andom process studied is 

1,(t) = number  of  molecules in C at t ime r 

= ~ u(&(t--t~)) 

where the {t~} are Poisson arrivals,  frequency ,/, and the s, = 1 ,T, .  with 
T~ the t ime required for  a molecule which entered C at  t ime t~ to be absorbed 
by one of  the walls. 

s 

! 

H 2W 

/ 
/ 

x 

Fig. 2. Example of I / f  noise. 
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The probabili ty densities of the components  of  the velocity of  a molecule 
passing through H are 

p~(c~) = p~.=(~) = [1/(27r)~, 2 c~] exp(--c~-~/2cr'~) ' 

p~(~) = (a/(r 2) exp(--c~z/2cr2), ~ >~ 0 

The latter form is on account  o f  the condit ioning imposed on vu by the 
assumption that  the molecule passes through H. 

The x componen t  of  velocity is irrelevant to T, because of  the reflecting 
nature of  the walls in the yz plane. Now, 

T = min[W/i t,~ ], L/v~] 
SO 

and hence 

where 

s = max[[ v~ I/W, vu/L] 

Prob[s ~< c~] = Prob[] v. ] ~< c~W]Prob[v u ~< c~L] 

= [2/(2,) a'~ o] j exp(--/3~/2cr "~) dfi 
0 

a L  

x (1/a 2) f 7 exp(--Y2/2cr2) ,47 
0 

= [I 2Q(~14~/cr)][1 - exp( ~  . . . .  - -  - -  a - L - / Z a - ) ]  

--~ a a, small a 

Q(/z) = [1/(2~r)1/21 j exp(--v2/2) dv 
t~ 

Differentiating to get the probabil i ty density, 

p~(~) = [2 W/(2~,) ~/-~ or] exp(--  ~z rr./2c~Z) 

+ [1 - 2Q(,~ W/e)](aL2/a 2) exp(- -  a2L2/2cr2) 

- -  [2 W/(2~r)l/~ ~r] exp ( - - a  ~ W2/2cr ~) exp(- -  c~-La/2e 2) 

for  c~ ~> 0. Now,  take 

po(a) = [2W/(2rr) z/2 or] exp(--a2W-"/2cr-"), ~ .~ 0 

as determining a limit spectrum 

:o 

So(co) = (A/co) f [2W/(2rr)z/2 cr][exp(--~2W2/2cr2)](co/~2) Su(co/~) d~ 
0 

(2rr) z/2 (AW/cwJ) small o~ 

(17) 
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As an aside, it is remarked that A/c~ is independent of the temperature of 
the gas in S; 1/f  1raise in semiconductors <a> and in thin gold films ~:~ also 
appears to be temperature-independent. 

To return to the ana.lysis, since 

Q(oc) >~ �89 - [1/(2~)~/~-] ec, c~ >~ o 

then 

SO 

I ps(cO --po(oOi ~ [2 WL2~2/(2~)~/~ a 3] exp(--~2L~'/2cr 2) 

+ [2 W/(2zr)z/~ a] exp[--c~2(W 2 ,-4- L2)/2e 2] 

p0(~)[ [r~7(t~2 + L2) 1 :2] 
- -  j " T -  

O 

Hence the conclusion allowed by (14) is that for any COo > 0, any E >-- 0, 
one can take W/L small enough so that [ S,~(co) --So(W ) I ~ ~ for all w ~ coo~ 

To the extent that L >~ W, the spectrum of n(t) resembles a I / f  spectrum 
at low frequencies. However, there is eventual low-frequency turnover. 
Since, from (17), 

p~(c 0 "~ c~-" small oc 

and observing from (16) that  for small co, the function S,~(co/~) is approxi- 
mately 1 for most of the range of x. 0 <~ ~ < o5, one determines from (11) 
that 

S~(co) ~ A J0 (1/~2) P~(~) d= small co 

Another situation develops in our example if the wall in the xz plane, 
a distance L from H, is made reflecting. Then, it would appear that 

p~(~) = p0(~) = [2 W/(2~v) ~:-~ ~] exp(--~ -~ W~/2~ ') (181 

but this is not the case, since this p.~ implies an unstable t~(t). The number of 
molecules in C grows without bound and collisions eventually occur. 

It is possible, although not certain, that H may be made small enough 
so that the collisions have the effect of modifying p~ only slightly from the 
form of (18), so thatp~ resembles (18) but 

p,~(~) ~ a ~ small c~ 

where 0 < ~3 ~ I. This, as the analysis has shown, would result in a strict 
I /f  x-~ spectrum, and 8 could be so small that it would be indistinguishable 
from 1/f. 
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The basic idea that has been employed in these examples is that of  
forcing the time T during which a molecule remains in a given region to be 
essentially inversely proportional to a velocity component which has not 
been conditioned. Making L >~ W in the first example means that the 
absorption by the walls in the xy plane dominates the situation, rendering 
the conditioned v~ of slight significance~ It might be possible to accomplish 
the latter by introducing a field in the y direction instead of making L >~ W. 

In fact, it is obvious that the example can be elaborated and complicated 
considerably, both in regard to geometries and specific physical mechanisms. 

Other types of examples which fit the required conditions are no doubt 
possible. It is likely that the function 

ll,  0 ~ 0 ~< 1 
u(O) = 0, e l s e w h e r e  

(19) 

will be prominent in such examples. Also, the probability densities 

po,(a) = [2/(2~r) x/2 g] exp(--a'/2~2), a > 0 

p02(~) = (l/c0 exp(-.a/e),  ~ >~ 0 

po3(~) = (0 elsewhere 

will be likewise prominent in determining limit spectra. 
In these cases, it is found that ecoS0(~o) is a function of/~ = co/e. Define 

H ~ )  = ~coS0(oJ). Figure 3 shows H(Ix)/H(O +) versus /x assuming (19) and 
the three preceding probability densities. 

Fig. 3. 

, I  ' 

,o ! - 
- J l  . . . . .  ~ . . . . . .  ! 

.o, .oa .04 .* .a .4 2 4 Lo 

P l o t  o f  10  logzo[H(~)/H(O+)] v e r s u s  ~ ( l o g  s c a l e )  f o r  c a s e s  P o x ,  P o 2 ,  P o 3 .  
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5. D I S C U S S I O N  A N D  R E L A T I O N  T O  O T H E R  T H E O R I E S  

The noise process studied here is made up of a superposition of pulses 
of the form u(s ( t  - -  h)) ,  where, to express the result roughly, the condition 

p~(c~) ,-~ 1 small o~ (20) 

implies a I / f  spectrum. If one defines T ~ 1/s, then the equivalent pulse is 
u(( t  - -  tO~T) and the condition (20) is equivalent to 

pr(~) "~ 1/~ 2 large ~ (21) 

Thus a tail of the form (21) implies a i / f  spectrum. 
As suggested in Section 1, T, rather than s, could have been carried 

along in the analysis and completely equivalent mathematical results would 
have been obtained. The motivation for choosing s should be clear from the 
material in Section 4; it seems that the problem of finding specific physical 
situations meeting the conditions of the theory is facilitated thereby. The 
reason for this is simply that if one considers the known probability laws 
associated with the variables on which attention is conventionally focused, 
the probability densities of the form (20) far outnumber those of the form (21). 
This point is, of course, empty in a strictly mathematical sense. One could 
have carried T, rather than s, along in the analysis and one could have, in 
Section 4, observed that the probability densities' of the reciprocals of the 
velocity components were of the form 

[1/(2,.r)z/~ ~2]  exp(--1/2~~ 2) 

and then reached the same conclusions. This would clearly have been an 
unnatural and awkward procedure. 

The significance of the example presented in Section 4 is twofold. First, 
it seems to be the first such construction of a simple physical situation in 
which the 1/f spectrum is manifested. That is to say, no arbitrary assumptions �9 
were made to get the desired result; neither a strange waveform nor an 
unfounded probability density was required. Second, the example shows that 
the theory is not vacuous. There is little doubt that some, if not all, 1 I f  

phenomena are explicable in terms of the present theory. 
However, there is no intention to suggest that the specific example 

presented in Section 4 is the key to explaining the I / f  spectrum in any of the 
physical contexts mentioned in the introduction; for those problems, all 
that can be said is that a mathematical theory of significant generality and 
simplicity is offered. It is hoped that persons with expertise in those contexts 
will attempt to apply the theory in more specific ways. 

In order to relate the present theory to others,the result equivalent to (11) 

822/4/2/3-9 
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i_, nox~ de lS \ cd  i l l  a somexxhat Ioo>c, manJ~cr .  If" a r a n d o m  proccb~ , ' t([) is 
made up of pulses of the form 

u ( ( t -  t,.)/T) (22) 
where the {G are Poisson arrivals and T is fixed (the same for all i), then its 
covariance function is, by Campbell's theorem, proportional to 

J-~, u(t/T)u((t -F r ) /T) ,h = TS,,(r/T) 

If 
~e -~ 0 ~ 0 

u(0)--  !0 t?- 0 t23) 

then the covariance function is proportional to  

�89 r I:"T) (24) 

Th'e spectrum of this process is proportional to 

2T j (cos or) ~,(r,/T) dr = T'-S~(oJT) 
0 

and under the condition (23), then, the spectrum is proportional to 

T~/(I -- ~oaT ~) (25i 

]f i t  is assumed that the random process i~(z) is a superposition of random 
processes of this sort, but having different time constants T with probability 
density pr(~), then the spectrum is proportional to 

J 0 pr(a) ~SdaoJ) da (26) 

The result (26) is completely equivalent to (11) when the relation s = l,'T is 
made. If (23) holds, then the spectrum is proportional tO 

j pr(a)[~2/(i -+- oo"a")] ct::~ (27) 
0 

and it is seen that if (21) holds, then this gives a I f  spectrum for smallf.  
The reasoning here is almost identical to that of van der Ziel, ~9) except 

that in place of (27), van der Ziel has (except for differences in notation) 

zo 

4J((t) 2 f pr(~)[~/(1 -1- ~u"a")] CI,~ (28) 
0 

[Eq. (11) in Ref. 9], which obviously calls for a pr(~) of the form 1,/,~ (over 
some finite interval) if an approximate t / f  spectrum is to be obtained�9 
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The discrepancy is due to. the manner in ~hich .V(t)-' is treated. It (23), 
holds then from (24). 

X ( t ~  = 7-/2 

so X(/) ~ should be inside the integral of (28). thereby giving our result (27). 
Expression (28) is correct only if constant "'energy*' pulses of the form 

( 1 / v %  ,,((t - t , ) / r )  

are assumed in- the model, in place of  (22). This assumption was not stated 
in Ref. 9, but it is necessary if ap t ( a )  of the form ! .~ is to imply a 1 j ' spectrum. 

The same sort of situation appears to hold in Ref. 12 and. thus, also in 
Ref. 13, which refers to Ref. 12 on this point. In Re[. 13. the 1'~ form is again 
required for pr(x), for tinder the condition that 

T = Toe*" 

it is assumed that 

p,(c,) = const, 0 :.<_. _~ -'_2 x~ 

which is equivalent. 
This matter is not pclrsued further here becau.,e there is no intention 

of arguing the correctness or incorrectness of the van der Ziel theory, and in 
any case van der Ziel's objectives have differed from those pursued here. It is 
only desired to show the relation of the present theory to a I portion of 
van der Ziel's and to indicate the exact point of divergence. 

It is worth remarking that no probability density may have the form 
I/c~ for small c~ or as a tail, and thus, no concept of  a limit spectrum, 
paratle!ing the present concept, is possible in a theory which requires that 
pr(X) have the form I/x over some finite range. 

6. C O N C L U S I O N  

The result of this paper is a mathematical  theory of 1If  noise which is 
related to that of van der Ziel, but which differs on one basic point, is some- 
what more general, and appears to offer purely mathematical  advantages. 
The theory is such that it is possible to construct simple physical situations 
exhibiting t h e  l~f spectrum without making unfounded assumptions or 
arbitrary pdstulates. 

A special result is the introduction of the concept of a limit spectrum for 
1If  noise. This is paralleled in the case of  white noise, where the associated 
spectrum also represents a limit which may not be physically attained. 
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A P P E N D I X  A 

First recall Campbell's theorem. Let v(t) be some function and let a 
random process 

r e ( t ) =  ~ v ( t - -  ti) 

be defined, where the {t~} are Poisson arrivals with average frequency ,'~. 
Campbell's theorem then asserts that 

n-5 = E{m(t)} = ;~ | v(t) dt 
, )  

- -  z c  

E{m(t) m(t § ,)} = A ( - v(t) r(t + ~-) dt § m"- 
IJ o o  

Now, under the assumption that 

J-=o ~,,(t)dt < oc (A.I) 

the process n(t) is well-defined and stationary, for the random variable n(t) 
is we]l-defined if i n ( t )  < m with probability one. This is implied by the 
condition E{! n(t)i} < 0% but 

I n(t)l ~< r(t) = ~ t w~(t - -  t~.)r 

and 

E{r(t)} = E E{wa(t -- t~)i h} = E ~ ( t  -- h) 
! , i = - ~  { i = - o c  i 

= a I ~,(t) dt 
- - o c  

by Campbell's theorem. Hence (A.I) implies that the process (6) is well- 
defined. Now, defining a random process 

n'(t) = ~ ~(t -- ti) 

one has 
~o 

E{n(t)} ----- E{n'(t)] = )t f ~(t)  dt = ii 
- - o o  
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and 

but 

SO 

Now, 

E{n ' ( t )n ' ( t -q-  r)} = E i ~  ~( t  - ti) ~( t  -1- ~" --  t~)t t 

= ~2 + A j ~(t) ~(t + -r) dt 

E ff'(t - -  ti) fO(t 4- -r --  t,.) ----- fl ~F(t) ~(t  -b r) dt 
i = _ ~ c  --oo 

Etti~j= ~ ( t - - h ) ~ ( t + r - - t j ) )  i, =~2  

by the mutual independence of the {wi}, so 

E{n( t )n ( t  -+- ~-)} = E  l ~i=-~ E{w(t  --  tO w(t + ~" --  t~)', t~}l + ii 2 

= A f E{w( t )  w(t + ~')~ dt § J7"- 
--75 

Hence, under the assumption (A.I), the random process n(Q of (6) is 
well-defined, stationary, with mean 

g - -  )~ f ~( t )  dt 

and covariance �9 
= 

where N is defined in (4) and s  in (5). 

A P P E N D I X  B 

Since with w(t) = u(st), 

--oo --~o 0 

--co 0 

0 --~c 
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by (7) (9) and the mtttuaI independence o r s  and u. thc~ b) the re.~tt!b of 
AppeMix A. the random process n(O of (10) is x~ell-delillcd and stationar 5 
and 

t ; i~ = A iT(t) tit = 5 E~u(st) s = b Po(.x) d,. ,it 

= a ( ( : ,u,)p,,(~ J, a~ = ,x j (1 ,~)u,) ,~- ,  I ~(o),/o 

and 

L~jr)  = A j E{w(t)  w(t + r)] dt 

= A  
,x__ . J .  

t j e~,.(sr).(st + ~.): s = ~3. p..(g ,u  ,# 

;,~1 u-)J 

" 0  

E{u(at)  u(at ~ xr)] ,lt dx 

(I/g p.,.(_,) ~,(~-~) 4,  

Since 5'],, is bounded, this integral exists, by (8) and (9). In calculating 
the spectrum ofn(t) ,  one must exercise care in reversing orders of  integration: 

, T  ~:o 

S,,(co) = lira 23 t (coso)r) I l.,)p.(_x) Z ( x ~ ) , / ' , , / T  
F - . , ' .  " 0  " 0  

�9 ":o T 

= lim 23. ( ( l / a ) p / ~ )  ( (cos mr)5~  dx 
T - , z  dO dO 

Now, 
r T  . ~ T  

-J0 (cos~o.) ~ L . . )  d~ = (1,'~) -Jo 

so for all c~ > 0. T > 0, by the lemma in Appendix C, 

.r (cos mr) 5YJcl~') dr t ~ K/oJ 
�9 �9 0 

for some K > 0. Hence by the dominated convergence theorem and (8) 
and (9) 

s.(~,) = 2,x j (1/~)p,(~) [ (cos ~ . )  ~ , u . )  ,/~ a .  
(1 " 0  

, x ;  

= ~ j (1/4p/~)(1/~) s~(o~/~) d= 
0 
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A P P E N D I X  C 

A function g(t*) defined on [0, m)  is o f  bounded variat ion if and only it" 
there exists a constant  31o, 0 < Mo < ~ ,  such that  fox: any A" and any 
{t*~} such that  

0 >~ Fo < t* l  < t*', "'" < t*.,,r < co 

it is the case that  
N 

Y, l g(m) - g(m-~)i ~< a o  

Such a function is necessarily bounded:  

i g(p-)l ~< M ,  < 

on [0, oc). 

L e m m a .  Let g(t*) be a cont inuous  funct ion of  bounded variat ion 
on [0, co) with bounds  M , ,  M~. Then.  for any v and T "~. 0. 

[ , T  

[j ~co~ ~t*) g(t*)<it*' i "<-- ( M o  + M1)!v 
0 I 

PFoof. 

T 

j (cos vt*) g(t*) dt* 
U 

,'ri2v 

= gG)  J 
0 

5:r s2v 

+ gm.,_~ I 
3 ,-r~/2 v 

By the mean value theorem for integrals and the cont{nuit\  o f g .  

a.-./2v 

cos(,>) ,It* + g(51) j 
/ 2v 

cos0,t*) dt* 

cosn,t*) @ -'5 . . . .  - g(3,,) 

T 

+ g(3n+l) J* cos(vt*) dt* 
( 2 n + l ) ~ / 2 v  

( 2 n + l ) . ' r / 2 v  

!" cos(vl~) d!s- 
(2~t--1):r, 'gv 

where #7 is such that  

and 

0 < rio < rr/2v, 

rr/'v > T -  [(2*7 § 1)rr/2v] > 0 

(2i --  1) rrl2v < /3 i < (2i + 1) rr,/2v, i = 1 . 2  .... n 

(2n + 1)~/2v < fi , .~ < T 
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Hence 

~T 
J o (cos v/~)g(bd d/, = (l/v)[g(5o) -- 2g(/3~) + 2g(/3~)... -4- 2g(/:3,) :q:: g(/3,+~) 

cg(#~+~)] 

w h e r e l c j  ~< 1. But then 

n+l 

. r  (cos vm) g(tz) d~ 1 <~ (I /v)  ~ 1 gffl,:) --  g(B,-O ~ "Jr (I/v)l g(/3.+,)l 
t0 i=1 

(Mo + M1)/v 
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